

A few elements about environmental impacts of AI for environment

Aurélie Bugeau

joint work with Anne-Laure Ligozat (LISN), Julien Lefèvre (AMU), Jacques Combaz (Verimag)

December 7th 2022

Enlight-Rise workshop

AI

Abuse of language

AI growth

2

AI and environment

2 communities

- · Al for green: Al as a tool for sustainable development
- green AI: measure and reduce AI impacts

AI and environment

2 communities

- · Al for green: Al as a tool for sustainable development
- green AI: measure and reduce AI impacts

Al for achieving the Sustainable Development Goals

[Vinuesa et al., 2020] : 444 references for 169 goals

[Rolnick et al., 2019]: 826 references in 13 domains

[Rolnick et al., 2019]: 826 references in 13 domains

	Causal inference	Computer vision	Interpretable models	NLP	RL & Control	Time-series analysis	Transfer learning	Uncertainty quantification	Unsupervised Icarning
1 Electricity systems									
Enabling low-carbon electricity									
Reducing current-system impacts									3 9 3
Ensuring global impact									•
2 Transportation									
Reducing transport activity		•				•		•	•
Improving vehicle efficiency									
Alternative fuels & electrification					٠				•
Modal shift	3 • 3								
3 Buildings and cities									
Optimizing buildings	•				•	•	•		
Urban planning		•							
The future of cities									
4 Industry									
Optimizing supply chains									
Improving materials									
Production & energy			•						
5 Farms & forests									
Remote sensing of emissions									
Precision agriculture		•			٠	•			
Monitoring peatlands		•							
Managing forests						•			
6 Carbon diovide removal									

[Rolnick et al., 2019]: 826 references in 13 domains

Techno-optimist perspective.

But **uncertain impacts** and Jevon's paradox are mentioned:

- Transportation: "autonomous vehicles could cause people to drive far more"
- Industry: "it is worth noting that greater efficiency may increase the production of goods" and thus GHG emissions"
- Farms and forests: "making forestry more efficient can have a negative effect by increasing the amount of wood harvested"

[Rolnick et al., 2019]: 826 references in 13 domains

Recommendations are proposed:

"In all these cases, projects should be pursued with great care so as not to impede or prolong the transition to a low-carbon electricity system; ideally, projects should be **preceded by system impact analyses** to ensure that they will indeed decrease GHG emissions." p10

"When designing and promoting new mobility services, it is important that industry and public policy prioritize lowering GHG emissions. Misaligned incentives in the early stages of technological development could result in the **lock-in to a service with high GHG emissions**" p15

AI and environment

2 communities

- Al for green: Al as a tool for sustainable development
- · green AI: measure and reduce AI impacts

Measuring impacts while training (green AI)

Method 1 : count the number of basic operations

- · Reflects the amount of calculations
- · Partially correlated with execution time, hardware independent
- · Not completely correlated to energy consumption

Measuring impacts while training (green AI)

Method 2 : Measuring energy use

$$E_{total} = PUE \left(E_{dram} + E_{cpu} + E_{gpu} \right)$$

where

$$PUE = \frac{\text{Total facility power}}{\text{IT equipment power}}$$

source : B. Davy via B. Pett

Some existing tools

http://www.green-algorithms.org/

codecarbon (mlco2)

Some results

- 4 NLP models (natural language processing) [Strubell et al., 2019]
- · Estimated energy consumption while training

Model	Hardware	Power (W)	Hours	kWh-PUE	CO ₂ e	Cloud compute cost
Transformerbuse	P100x8	1415.78	12	27	26	\$41-\$140
Transformer _{big}	P100x8	1515.43	84	201	192	\$289-\$981
ELMo	P100x3	517.66	336	275	262	\$433-\$1472
BERThase	V100x64	12,041.51	79	1507	438	\$3751-\$12,571
BERThase	TPUv2x16		96		-	\$2074-\$6912
NAS	P100x8	1515.43	274,120	656,347	626,155	\$942,973-\$3,201,722
NAS	TPUv2x1	-	32,623		-	\$44,055-\$146,848
GPT-2	TPUv3x32		168		1	\$12,902-\$43,008
1					Ibs	8
/	Most wide 652 kg C0 ~1 round-t or ~2 500	y used mod 2e rip Paris Hor m en voiture	el at the ti ng Kong b	me y plane	PUE FE =	= 1.58 (Ascierto, 2018 0.954

Conclusions from authors

- · Need for cost-resource/accuracy analysis
- · Public and shared computing resources for academics (price)
- · Development of less consuming hardware and algorithms

Limits of existing works

- · Limits of existing measuring tools:
 - Mono-criterion (CO2e)
 - · Perimeter: electricity consumption during training only
- · Al community not well aware of existing works on impacts
- · And at the same time: promises

Abstract Matchive Learning IAU, workload have rapped grann in migratures, for insued concerns about their active to copy in the concerns of the second secon

Limits of existing works

- · Limits of existing measuring tools:
 - Mono-criterion (CO2e)
 - · Perimeter: electricity consumption during training only
- → How to completely evaluate AI services dedicated to environment?

Limits of existing works

- · Limits of existing measuring tools:
 - Mono-criterion (CO2e)
 - · Perimeter: electricity consumption during training only
- → How to completely evaluate AI services dedicated to environment? [Ligozat et al., 2021]
- → Life cycle assessment (LCA): internationally standardised methodology for assessing environmental impacts associated with all the stages of the life cycle of product, or a service.

Life cycle of an AI service

Environmental impacts of a service

The life cycle assessment (LCA) of a service relies on:

· LCAs of the equipments/devices involved in the service

Environmental impacts of a service

The life cycle assessment (LCA) of a service relies on:

· LCAs of the equipments/devices involved in the service

 allocation procedures (keys) to determine the fraction of the impacts attributed to the service.

Measuring environmental benefits of an AI solution

• What should be done:

The (potential) benefits of an AI solution M_2 which is a substitute for a reference solution M_1 (typically without AI) can be deduced from a comparative LCA:

$$\Delta(M_2|M_1) = LCA(M_2) - LCA(M_1) \in \mathbb{R}^d$$

Measuring environmental benefits of an AI solution

• What should be done:

The (potential) benefits of an AI solution M_2 which is a substitute for a reference solution M_1 (typically without AI) can be deduced from a comparative LCA:

$$\Delta(M_2|M_1) = LCA(M_2) - LCA(M_1) \in \mathbb{R}^d$$

- · Common pitfalls in such evaluations:
 - · focusing on a single environmental criterion (burden shift)
 - · restricted perimeter
 - · generalization of contextual solutions/benefits
 - third-order effects (e.g. rebound effects) are overlooked.

Is AI for green aware of its own impact ?

If yes, how is it measured ?

Do the authors are able to say that a new solution is better than an old one ?

		Cantal Informer	Competers vision.	Interpretabl models	NLP	RL & Cotto	Time series analysis	Transfer learning	University	Unsupravisi Issening
	Electricity systems									
	Enabling low-carbon electricity					٠			•	
	Reducing current system impacts Environg global impact		:				•	2	•	:
	Transportation									
	Reducing transport activity						•			•
	Improving whicle efficiency					٠				
	Alternative facts & electrification									• C
	Modal shift	•	•						•	
	Buildings and cities									
	-Optimizing buildings									
4	Dibon planning						•			•
-	The Juture of cities							•	•	•
*	Industry									
-	Optimizing supply chains					٠				
	Improving materials									•
	Production & energy		•							
	Finne & forcely									
	Remote searing of emissions		•							
	Procision agriculture		•			٠	•			
	Monitoring pratinuds		•							
	Managing funests		•			٠	•			
	Chabron diexide removal									
	Direct air capture									
	Sequestering CO ₄									•

	Climate prediction					
	Uniting data, ML & climate science					
	Forecasting extreme events					
	Societal impacts					
0	Ecology					
E.	Infrastructure					
đ	Social systems					 • • •
24	Crisis					
	Salar gour agineering					
	Understanding & improving accords					
	Engineering a control system				•	
	Medicing impacts					
	Individual action					
	Understanding personal footprint					
2	Facilitating behavior change					
1	Collective decisions					
i.	Misheling social interactions					
10	Informing policy				•	•
12	Designing markets					
=	Education		•			
	Finance				•	

Case studies

Analysis of several domains in [Rolnick et al., 2019] identified with "high leverage" (Modelling demand/freight, Electric vehicle, Low carbon, Smart buildings).

57 articles have an environmental evaluation following the categories:

- a No mention of the environmental gain.
- b General mention of the environmental gain.
- c No quantitative evaluation or only indirect estimation.
- d Evaluation of the energy gain without the AI program.
- e Evaluation of the energy gain taking the use phase of the AI service into account.
- f Comprehensive evaluation of the environmental gain (comparison of LCAs).

We found no studies that follow the categories:

- e Evaluation of the energy gain taking the use phase of the AI service into account.
- f Comprehensive evaluation of the environmental gain (comparison of LCAs).

Main results

- a No mention of the environmental gain.
- b General mention of the environmental gain.
- c No quantitative evaluation or only indirect estimation.
- d Evaluation of the energy gain without the AI program.

Example: a smart-building

Commonly overlooked aspects:

- life cycle impacts of devices (sensors, DC, networks, ...)
- · impacts of the training phase
- what are the impacts of the smart solution(s) on the design of the building?

is the solution(s) applicable to old buildings?

- · are claimed energy gains reliable in the operational context?
- human interactions: rebound effects, counteracting behaviors.

Discussions

- Current environmental evaluation of AI services is under estimated (mostly energy/GHG)
 => LCA, multi-criteria
- Many unknowns in the LCA (e.g. production of GPU)
 => lobby the companies to open a part of their data
- Large structural changes are difficult to take into account => Consequential LCA instead of attributional LCA
- The promises suggested by AI for green must be more evaluated and debated

Thank you ! Questions ?

References I

	_

Henderson, P., Hu, J., Romoff, J., Brunskill, E., Jurafsky, D., and Pineau, J. (2020). Towards the systematic reporting of the energy and carbon footprints of machine learning. *Journal of Machine Learning Research*, 21(248):1–43.

Ligozat, A.-L., Lefèvre, J., Bugeau, A., and Combaz, J. (2021). Unraveling the hidden environmental impacts of ai solutions for environment. *arXiv preprint arXiv:2110.11822*.

Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., Ross, A. S., Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A., Luccioni, A., Maharaj, T., Sherwin, E. D., Mukkavilli, S. K., Kording, K. P., Gomes, C., Ng, A. Y., Hassabis, D., Platt, J. C., Creutzig, F., Chayes, J., and Bengio, Y. (2019). Tackling Climate Change with Machine Learning. *arXiv:*1906.05433 [cs, stat]. arXiv: 1906.05433.

Strubell, E., Ganesh, A., and McCallum, A. (2019).

Energy and policy considerations for deep learning in NLP.

In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3645–3650, Florence, Italy. Association for Computational Linguistics.

Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A., Langhans, S. D., Tegmark, M., and Fuso Nerini, F. (2020).

The role of artificial intelligence in achieving the Sustainable Development Goals.

Nature Communications, 11(1):233.